Neural mechanisms of action recognition and implied motion
نویسندگان
چکیده
منابع مشابه
Neural circuits underlying motor facilitation during observation of implied motion.
In the present study we used single and paired-pulse Transcranial Magnetic Stimulation (TMS) to evaluate the effect of implied motion on primary motor cortex microcircuits. We found that observation of the implied motion of a static image increases MEP amplitude and reduces short-interval intracortical inhibition (SICI), without significant modulation of intracortical facilitation and sensory-m...
متن کاملAction Recognition using Motion Primitives
The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are ea...
متن کاملMotion Primitives for Action Recognition
The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are ea...
متن کاملNeural mechanisms of object recognition.
Single-unit recordings from behaving monkeys and human functional magnetic resonance imaging studies have continued to provide a host of experimental data on the properties and mechanisms of object recognition in cortex. Recent advances in object recognition, spanning issues regarding invariance, selectivity, representation and levels of recognition have allowed us to propose a putative model o...
متن کاملNoise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster
Appropriate and robust behavioral control in a noisy environment is important for the survival of most organisms. Understanding such robust behavioral control has been an attractive subject in neuroscience research. Here, we investigated the processing of wide-field motion with random dot noise at both the behavioral and neuronal level in Drosophila melanogaster. We measured the head yaw optomo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2012
ISSN: 1534-7362
DOI: 10.1167/12.9.142